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I. A time-dependent gamma-ray source on the boundary between air and a conducting half- 
space excitesradio-frequency electromagnetic waves in the surrounding space. The problem of 
calculating the parameters of this field has been considered repeatedly in the literature (see 
the review in [I]). It is well known [I-4] that the radiation mechanism reduces to the fol- 
lowing fundamental processes: Gamma-rays are inelastically scattered by the molecules of the 
medium (in this case air) and create a current of Compton electrons. The electrons propagate 
mainly in the radial direction from the source and ionize the air, and a back conduction cur- 
rent results. The resulting system of electric currents generates a time-dependent electro- 
magnetic field, whose parameters are determined by the characteristics of the gamma-ray source 
and the surrounding medium. In particular, an important factor is the electrical character- 
istics of the surface such as its relative dielectric permittivity E0 and electrical conduc- 
tivity o0. 

A numerical method of solving the problem was worked out in [2] under the assumption 
that the conductivity of the surface is infinite (o0 = ~). In this case, the tangential com- 
ponent of the electric field on the boundary of the conducting halfspace is zero and the angu- 
lar dependence in Maxwell's equations separates out. Thus the two-dimensional problem can be 
reduced to a set of one-dimensional time-dependent problems. 

In [3, 4] an attempt was made to take into account realistic characteristics of the sur- 
face (s0 and ~0 are finite constants). In this case the tangential components of the elec- 
tromagnetic field on the boundary are continuous and therefore the electromagnetic field must 
be calculated both in air and in the conductor, which leads to a significant complication of 
the problem and to a large expense of computer time. On the basis of the results of [3], it 
can be concluded that a finite electrical conductivity of the conductor leads to a decrease 
of the amplitude of the radio signal by not more than a factor of two. This can also be 
understood from simple physical arguments: When ~0 = ~, the radiating electric current is 
twice as large (because of reflection from the ideally conducting surface) as it is in the 
case when the surface is a dielectric. 

Hence we conclude that the problem can be solved by a simpler method, namely, an expan- 
sion in a small parameter depending on the conductivity of the surface a0, where the solution 
in the zero-order approximation is to reduce to the results of [2]. The purpose of the pre- 
sent paper is to work out a general method of numerical solution of the time-dependent prob- 
lems of generation of radio waves by a gamma-ray source on the boundary of a conducting half- 
space and also to obtain a particular analytical solution of the problem for the case of a 
low-power gamma-ray source. 

2. A time-dependent gamma-ray source is located directly on the conducting surface and 
is switchedon at the instantof time t = O. We choose spherical coordinates ~,%z) with the 
origin at the center of the source and the polar axis along the normal to the surface. In- 
stead of the absolute time t, we introduce the local time T = t -- r/c, where c is the velocity 
of light. Because the problem has axial symmetry, Maxwell's equations in air can be written 
in the form 

t 0 (sinOBr t OE~ 4 ~ . .  T) E ~ + ] ( r , x ) ] ,  
r sin 6 ~ c O~ ~- "7- [a  tr,  

t 0 t OB~ . I OEo 4~ 
r dr ( rB~)  + - 7 - - - ~  = -7- ~ + -7" c~ (r, T) Eo ,  

i o t OEo i OEr I OB m 
r Or (rEo)  - -  -7" 0--~" - -  "7- O"--~ c Og ' 

(2.1) 
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where j(r, ~) is the current of Compton electrons and o(r, T) is the conductivity of the 
ionized air. The components of the electromagnetic field must satisfy the initial conditions 
Er=Ee = B~=0 for T < 0. Because the ganm~a-ray source is surrounded by a perfectly con- 
ducting sphere of radius r0, we have the boundary condition Ee(r = re, T, 6) = 0. The region 
of generation of the electromagnetic field, where there exists a radiating current j + oEr, 

is bounded by a sphere of radius r = a (a > r0). 

In order to solve the external electromagnetic problem we use the Leontovich boundary 
condition. Then the field inside the conducting halfspace can be disregarded completely. 
According to [5], the boundary condition on the Fourier components of the field at @ = ~/2 is 

E,(r, ~) = ~(m)Br ~), (2 .2 )  

where ~(~) = (~0 -- 4~io0/~) -I/2 is the surface impedance and we must assume the restriction 
l~(m) l ~ I. We note that the impedance depends on the shape of the surface. Because the 
characteristic frequencies of the radio emission lie in the frequency region below ~ ~ I MHz 
[3], we can assume (following [6]) that in this frequency region the electrical parameters of 
the surface do not depend on ~ and vary from g0 = 3, o0 = I05 see -l for dry soil to g0 = 75, 
o0 = 5"10 l~ sec -~ for sea water. 

The Fourier method cannot be used to solve the system of equations (2.1) and therefore 
the boundary condition (2.2) must be written in terms of time. As shown in [5], this can be 
done in the following way: 

Er (r, ~) = S dz'~ (~ --  x') Br (r, ~'), (2 .3)  
0 

and 

dco 
E~, B~ (r, z) = J ~-~ E~, B~ (r, @ e ~. 

The surface impedance as a function of time ~(T) is given by 

ac 1 

= = �9 = 

which can be calculated easily in two cases: r >> I and ~-0 ~ I. If r >> I, then we put 
xl = ~ and evaluate the integral with the help of the residue theorem and obtain 

i e-~/% [Io (T/%) - -  [1 (r/~o)], 
- VTo  ~ 

where ~0 = g0/2~0 and I0 and I 1 are the modified Bessel functions. ~rnen r ~ I and xl = 
~iT << x0, the impedance can be expressed in terms of the Fresnel integrals S and C: 

~, (o),r)- (2~x)'/" ]/~ { ]/-o),x (sin oh, + cos ~o,~ ) -- V ~  [S (~/r-~-~) + C ( ~ )  ]}. 

Graphs of the time dependence of the surface impedance are shown in Fig. I, where 

Now the boundary-value problem (2.1), (2.3) is completely determined with the initial and 
boundary conditions. We seek a solution in the form of an expansion in the small parameter 

~ ( z ) / ~ z  ~ 1: E~,Eo, B ~ = E ~ , E ~ , B ~ +  E~, E~ ,B~+ . . .  

In the zeroth approximation the boundary condition (2.3) has the form E~ = O at ~ = ~/2 
and the problem reduces to that treated in [2], in which the surface is assumed to be an ideal 
conductor and the Compton electron current can be written as 

j = ] ( r , T )  i, a/2<.~0~<a. 

Then we expand the  Compton c u r r e n t  and the  f i e l d  components  in  s e r i e s  of  Legendre  p o l y n o m i a l s :  
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~f~l ~ ~ o~.] ~ . �9 
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5 io z 

Fig. 1 

oo 

.] = ] ( r ,  T) CzPtCeosO), E ~  ~_~ E~ T)PzCcosO), 

o I ~ Bo I (r, T) Pl (cos 0), t Egt (r, T) P~ (cos 0), By = r E~ =-7-  
/ = 1  / = 1  

where P~(cos 0) i s  an a s s o c i a t e d  Legendre  p o l y n o m i a l  and the  c o e f f i c i e n t s  C l can be e x p r e s s e d  
in  terms of  gamma f u n c t i o n s  

! -2/-~- 1 

o o The expansion c o e f f i c i e n t s  ETa, Eoz, B~ are ca l cu la ted  by numer ica l l y  i n t e g r a t i n g  a system of 
one-dimensional time-dependent equations (see [ 2]). 

After solving the problem in the zero-order approximation, it is a simple matter to cal- 
culate the i-th approximation using the known solution for the (i -- 1)-st approximation, where 
i = 1, 2, ..... The boundary condition (2.3) in this case ~ is 

(r, = B$ (r, = 
0 

In place of the components of the electromagnetic field E~, we introduce the new function 

S ( =) F ~ C r , % O ) = E ~ C r , % 0 ) - -  d~'~(T--~ ' )B~-:  r , ~ ' , ,O=-g -  �9 Then Maxwe l l ' s  e q u a t i o n s  can be w r i t t e n  in  
0 

the form 

. .  , a f t .  
t o ( s i n  0 B ~ )  = - -  .-=-. + + ] i  (r,  

r s i n O  O0 c o ~  - 7  

-r Or u ~ = ~ - ~ - + - / -  

i :  o (rE~) I OE~ i OFi~ I OBOe 
r Or c O~ r O0 ~ c 0"~' 

T 

[ t o ] . I d . d ~ ( ,  .d) Bic-i (r, .r,), r<~a,  and ji(r, m) = 0 if r > a .  where ]i  (r, ~) = ~ (r, T) + ~ -  
k 0 

�9 i 
The function Fr: satisfies the boundary condition F r = 0 at 0 = ~/2. Then the boundary- 

value problem in the i-th approximation is analogous to that in the zeroth approximation with 
the replacement of the quantities ], E~, Eg, Bg by "r i i r ] ,Fr, Eo, B~ , respectively. Therefore the so- 
lution of the problem in the i-th approximation can be worked out according to the scheme 
discussed above. 

The general method considered here of the numerical solution for the electromagnetic 
field of a gamma-ray source located on the boundary of air with a conducting halfspace differs 
from the method used in [3]. First, as a zero-order approximation we choose the known solu- 
tion of [2] in our method, since this solution is a good approximation to the actual results, 
particularly when the conductivity of the surface is close to ideal. Secondly, the two-di- 
mensional spatial problem reduces to a set of one-dimensional problems when the Leontovich 
boundary conditions are used. Thirdly, the solution given here can be easily generalized to 
the case when the impedance of the half space depends on the surface distribution of the para- 
meters go and ~0. 
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3. The problem can be solved analytically in the special case when the conduction cur- 
rent is much smaller than the Compton current. This requirement will be satisfied for a low- 

power gamma-ray source [ 7] . 

We put o = 0 in the system of equations (2.1). Then we have the following equations for 
the Fourier components of the electromagnetic field Er, Eo, B~(r, o~, O) 

1 0 ( s i n  0 B e )  = i~ - -  4~ . c~'~ + T~ (r, o)),. r s in  0 00 

I 0 ir I 0 t OEr io~ 
7 Or (rB~) = "7-(E~ B~), r Or (rEo) r O0 ------7-(E~ B~). 

The boundary conditions are E 0 = 0 at r = r0, E~ = ~(m)Br at 0 = v/2, and Er(T) , Ee(~) , 
Be(T) = 0 for T < 0. We seek a solution to this boundary-value problem in the form of an ex- 
pansion in the small parameter 15(~)I ~ I. The n-th approximation (n = 0, I,...) is cal- 
culated according to the method described above. We obtain the following equation for the 

n B~eihr where k = ~/c: F o u r i e r  components of the  magne t i c  f i e l d  Br = 

r2 d2B~ 
dr---" ~ + [ (kr)  ~ - -  l (l + ~ ]  B~ = - -  4_._nc C~]~ (r, ~) e - i ~ r ,  ( 3 . 1 )  

where 

[ _~ ( ](r,o)), ) n = 0 ,  

]~(r,o~)= ik ~(m)B~-I r , ~ , 0 = - ~  - , n = t ,  2 , . . . ,  r<.~a, 

0, n = i ,  2 , . . . ,  r > a .  

The f u n c t i o n s  B~ must s a t i s f y  the  boundary c o n d i t i o n  dB~/dr = 0 a t  r = r0 .  Equa t ion  
(3.1) has a unique solution which can be found with the help of the solution of the homo- 
geneous equation [8]: 

i' % 
d l+1 . �9 i d I+1 . B~(r,~ e~r] dY{ yl+l [~[[~t -~d ~Z+leiUY]} ' - ~ k y  dy ] .fdx]n(x'~ ) e~x]. (3 .2)  

r 1 Y 

n The pa r ame te r  r l  can be exp re s sed  in  terms of r0 from the  r e l a t i o n  d B l / d r  ( r  = r0) = 0 
and r2 i s  d e t e r m i n e d  from the  c o n d i t i o n  t h a t  B~(T) be zero  fo r  T < 0. The components of the  
electromagnetic field in the n-th approximation are written in terms of the functions B~(r, ~) 
as 

oo 
eihr 

B$ (r, r 0) ---- - 7 -  AJ B~ (r, o)) P~ (cos 0), 
/ = 1  

oo 
n e ihr  

Ee.(r , o), O)= i--77- r Z d  B? (r, o))P~ (cos 01, 
l --~l  

E n(r,Co,O) ike i h , ~  1+ k2 dr 2]Br(r,o))P~(cosO) +~(r .-1 B~ (r, (o, 0 = ~/2), 

where B$ I ~0. 

If the electric current is a step function [9] 

[const  T>O,  

1 :~0 ,  

(3.3) 

(3.3) 

then in the zeroth approximation (o0 = ~) and for ~ = I, the expression calculated from (3.2) 
and (3.3) reduces for the results of [9], which were obtained by a different analytical method. 

The components of the electromagnetic field 0 0 B~ and E e can be calculated easlly for the 
simple model where j(r, T) = j06(T)/r 2. For I = I we have on the surface (8 = 7/2) 
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E~(r,~)=3ar~o (ti_~_)[cos(1/~c~+: k--Y"~o, "~(!+2~~ 

The radial component E~(e = w/2) is calculated from (2.3) with the use of r ~ I and To 
r0/c. Then the integral can be evaluated with the help of [10]: 

E~ (r, "0 = -1/--'~ot B~~ (r, ~) [t - -  e -TZ~~  (-~/-Co)]. 

The results obtained here can be used to design a numerical calculation of the electro- 
magnetic radiation and to calculate more accurately the parameters of the radio signal from 
a low-power gamma-ray source. 
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